Regenerative Energy-Efficient Manufacturing of Thermoset Polymeric Materials

Nancy Sottos

Materials Science and Engineering Beckman Institute for Advanced Science and Technology University of Illinois Urbana Champaign

Outline

Background and motivation

Rapid curing by frontal polymerization

Energy efficient manufacturing of composites

Deconstruction and regenerative strategies

Motivation: Thermoset Polymer and Composite Linear Lifecycle

Energy Intensive Manufacturing

Long cure times (hours) Energy intensive (Gigajoules) Energy scales with part size

Thermoset Polymer Composite Structures

Stiffness ~ 10² GPa Strength ~ 10² MPa Service life ~ 30 years

Motivation: Thermoset Polymer and Composite Linear Lifecycle

Energy Intensive Manufacturing

Long cure times (hours) Energy intensive (Gigajoules) Energy scales with part size Thermoset Polymer Composite Structures

- Stiffness ~ 10² GPa
- Strength ~ 10² MPa
- Service life ~ 30 years

Landfill (no end–of–life strategy)

Complex materials problems require collaboration

Philippe Geubelle AE, UIUC

Jeff Moore Chemistry, UIUC

Jeff Baur AE, UIUC

Randy Ewoldt ME, UIUC

Sam Tawfick ME, UIUC

UIUC Beckman Institute

EFRC for Regenerative Energy Efficient Manufacturing of **Thermoset Polymeric Materials**

Leah Appelhans Sandia

Adam Cook Sandia

Jeremiah Johnson Chemistry, MIT

Sam Leguizamon Sandia

5

Vision: Circularize the Lifecycle of Thermoset Polymers

Autonomous Strategies for Life Cycle Extension

Adapted from Patrick, J. et al., Nature (2018)

Outline

Background and motivation

Rapid curing by frontal polymerization

Energy efficient manufacturing of composites

Deconstruction and regenerative strategies

Frontal Ring Opening Metathesis Polymerization (FROMP)

Robertson et al. Nature (2018)

Frontal Ring-Opening Metathesis Polymerization (FROMP) of Dicyclopentadiene

165°C

2.0 GPa

3.0 MPa m ^{1/2}

55 MPa

	1	0

Alkyl Phosphites as FROMP Inhibitors

Robertson, et al. ACS Macro Letters, 6 (2017)

Control of DCPD Rheology

Aw, et al., Adv. Mater. Technol. 2200230 (2022)

Outline

Background and motivation

Rapid curing by frontal polymerization

Energy efficient manufacturing of composites

Deconstruction and regenerative strategies

Frontal Curing of Composites

• Vacuum Assisted Resin Transfer Molding (VARTM)

Resistive wire Vacuum bag

- Infusion of liquid DCPD resin into Toray T300 2x2 Twill carbon fabric
- Frontal polymerization triggered by heater along laminate edge

Insulating tool plate

Edge Triggered Frontal Cure of Composite Laminate

A 10 cm \times 20 cm panel cures in 2 min!

Robertson, et al., Nature, 557, 223 (2018)

Composite Properties

Through-Thickness Frontal Curing

Through Thickness Frontal Curing

Trigger: 15 sec Cure Time: 30 sec $V_f = 65\%$ $V_{void} = 0.1\%$ $T_g = 156^{\circ}C$

Vyas et al., Composites: Part A, 180, 108084 (2024)

Frontal curing reduces manufacturing energy and time

Comparison of processing temperature and time

- Up to 10 orders of magnitude reduction in energy consumed
- · Up to 2 orders of magnitude reduction in time to cure

Outline

Background and motivation

Rapid curing by frontal polymerization

Energy efficient manufacturing of composites

Deconstruction and regenerative strategies

Deconstruction Strategies for pDCPD Thermoset

Frontal Polymerization with Cleavable Comonomers

Investigated four different cleavable comonomers

- iPrAc-7 exhibits the fastest fronts at higher comonomer loadings, and iPrAc-8 the slowest
- The iPrSi-8 comonomers have similar front speeds

Screening Degradability of Comonomers

Deconstruction of copolymers:

Soak in 1.0M TBAF in THF or 1.0M HCl in CPME solution

Lloyd, et al, ACS Appl. Eng. Mater. 2023, 1, 477-485

Effect of Cleavable Comonomer on pDCPD Polymer Properties

Upcycling of Degradation Fragments

The T_g of the upcycled product is 60 °C higher than the original iPrSi-7 10 mol% network!

Lloyd, et al, ACS Appl. Eng. Mater. 2023, 1, 477-485

Fiber Reinforced Composite with Cleavable Comonomer

 $T_g = 105^{\circ}C$

Ĕ[°] (20 °C) = 37 GPa

Through Thickness Frontal Curing

Insulation

Insulation

Р

CFRC

Inlet

Thermal Trigger

Outlet

3 cm

50

100

Temperature (°C)

0

250

150 200

Deconstruction of Composite Laminate

Immersion in 1M HCL in CPME for 16 hours

SEM of upcycled fibers

Recovered carbon fabric and matrix oligomeric fragments

Regenerative Composite Manufacturing Cycle

Composite Properties After Upcycle

- Original: Generation 1 composite with pristine carbon fabric + DCPD + 10 mol% iPrSi-7
- Recovered: Generation 2 composite with recovered carbon fabric + DCPD + 10 mol% iPrSi-7
- Treated: Generation 1 composite with pristine carbon fabric + DCPD + 10 mol% iPrSi-7 soaked in HCl for 24hrs

Summary

- Frontal polymerization enables rapid, energy efficient processing of thermoset polymers and composites
- Successfully cured high Tg carbon-fiber reinforced composite in less than 30 sec and achieved properties comparable to autoclaved cured carbon/ epoxy composites.
- Incorporation of cleavable comonomers enable deconstruction and upcycling of thermoset pDCPD and composites.
- Successfully recovered fibers and reprocessed into new composites.

Acknowledgements

BOEING

Acknowledgements

Jia on En Aw

Edgar

Robertson

Elyas

Goli

Leon Dean

Doug Ivanoff

Evan Lloyd

Julian Cooper

Polette Centellas

Nil Parikh

Sagar Vyas

Mostafa Yourdkhni

Tyler Price